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Abstract. We introduce a new asynchronous parallel pattern search (APPS). Parallel pattern
search can be quite useful for engineering optimization problems characterized by a small number of
variables (say, fifty or less) and by objective functions that are expensive to evaluate, such as those
defined by complex simulations that can take anywhere from a few seconds to many hours to run. The
target platforms for APPS are the loosely-coupled parallel systems now widely available. We exploit
the algorithmic characteristics of pattern search to design variants that dynamically initiate actions
solely in response to messages, rather than routinely cycling through a fixed set of steps. This gives
a versatile concurrent strategy that allows us to effectively balance the computational load across all
available processors. Further, it allows us to incorporate a high degree of fault tolerance with almost
no additional overhead. We demonstrate the effectiveness of a preliminary implementation of APPS
on both standard test problems as well as some engineering optimization problems.
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1. Introduction. We consider solving the unconstrained nonlinear optimization
problem, minimize f(x), where x ∈ Rn and f : Rn → R. The problems of particu-
lar interest to us are defined by computationally expensive computer simulations of
complex physical processes. Such simulations may take anywhere from a few seconds
to many hours of computation on a single processor. In addition, we often cannot
use derivative-based methods to solve these problems because no procedure exists for
the evaluation of the gradient and the function evaluations are not precise enough to
produce an accurate finite-difference gradient.

Pattern search is a class of direct search methods that is popular for solving
the problems described above because no derivative information is required. Fur-
ther, pattern search methods admit a wide range of algorithmic possibilities; see,
e.g., [15, 16, 26]. The dominant computational cost for pattern search methods lies
in the evaluation of the objective function. We can exploit the definition of pattern
search to derive variants that perform multiple independent function evaluations si-
multaneously. We then can take advantage of parallel computing platforms to reduce
the overall computational cost of the search.

Both the nature of the problems of interest and the features of current distributed
computing environments raise some issues that we address in this work.

The original investigation into parallel direct search methods [7, 25] made two
fundamental assumptions about the parallel computing environment: 1) that the pro-
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cessors were both homogeneous and tightly coupled and 2) that the amount of time
needed to finish a single evaluation of the objective function was effectively constant.
It is time to reexamine these two assumptions. Clearly, given the current variety
of parallel computing platforms, including distributed systems comprising loosely-
coupled, often heterogeneous, commercial off-the-shelf components [24], the first as-
sumption is no longer valid. The second assumption may not hold in our case because
we focus on problems defined by the simulations of complex physical processes. Typ-
ically, the simulations themselves are based on iterative numerical techniques and so
the assumption that evaluations of the objective finish in constant computational time
on equivalent processors often does not hold. In fact, the behavior of the simulation
for any given input is difficult to assess in advance since it can vary substantially
depending on a variety of factors.

Because the original assumptions underlying parallel direct search are not valid
for the situations we now face, we can no longer assume that the computation proceeds
in lockstep. A single synchronization step at the end of every iteration, as in [25],
is neither appropriate nor effective when any of the following factors holds: function
evaluations finish in varying amounts of time (even on equivalent processors), the
processors employed in the computation possess different performance characteristics,
or the processors have varying loads. Our goal is to introduce a class of asynchronous
parallel pattern search (APPS) methods that make more effective use of a variety
of computing environments, as well as to devise strategies that accommodate the
variation in completion time for function evaluations. Our approach is outlined in §3.

Another consideration we address in this paper is incorporating fault-tolerant
strategies into APPS since one intent is to use this software on large-scale systems. As
the number of individual computers participating in a computation grows, the chance
that one (or more) will fail also grows. If we embark on a lengthy computation, we
want reasonable assurance of producing a final result, even if a subset of processors
fails. Thus, our goal is to design methods that respond to such failures and protect
the solution process. Rather than simply checkpointing intermediate computations to
disk and then restarting in the event of a failure, we are instead considering methods
with heuristics that adaptively modify the search strategy. We discuss the technical
issues in further detail in §4.

In §5 we provide numerical results, for both standard and engineering optimiza-
tion test problems, that compare a preliminary implementation of APPS with an
implementation of parallel pattern search (PPS) that incorporates a blocking synchro-
nization point within each iteration. Finally, in §6 we outline additional questions to
pursue.

Although we are not the first to embark on the design of asynchronous parallel
optimization algorithms, we are aware of little other work, particularly in the area
of nonlinear programming. Approaches to developing asynchronous parallel Newton
or quasi-Newton methods are proposed in [4, 10], though the assumptions underlying
these approaches differ markedly from those we address. Specifically, both assume
that solving the Newton equation at each iteration is the dominant computational
cost of the optimization algorithm because the dimensions of the problems of interest
are relatively large. A different line of inquiry [23] considers the use of quasi-Newton
methods in the context of asynchronous stochastic global optimization algorithms; we
only consider the problem of identifying local stationary points.

2. Parallel Pattern Search. Before proceeding to a discussion of APPS, let us
first review some key features of pattern search.
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A primary characteristic of pattern search methods is that they sample the func-
tion over a predefined pattern of points, all of which lie on a rational lattice. By
enforcing structure on the form of the points in the pattern, as well as simple rules
on both the outcome of the search and the subsequent updates, we are guaranteed
global convergence to a stationary point [9, 16, 26].

For our purposes, the feature of pattern search that is amenable to parallelism
is that once the candidates in the pattern have been defined, the function values at
these points can be computed independently and, thus, concurrently.

To make this more concrete, consider the following particularly simple version of
a parallel pattern search algorithm. At iteration k, we have an iterate xk ∈ Rn and a
step-length control parameter ∆k > 0. The pattern of p search directions is denoted
by D = {d1, . . . , dp}. Although other choices for D are possible, for our simple variant
we choose D ≡ {e1, . . . , en,−e1, . . . ,−en}, where ej represents the jth unit vector.
Fig. 2.1 illustrates an example of this search pattern when n = 2.
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Fig. 2.1. A simple instance of a pattern for pattern search.

Now that we have selected D, multiple algorithmic options are open to us. An
obvious strategy for concurrent computing is to identify an x+ ∈ {xk + ∆kdi, i =
1, . . . , p} such that f(x+) = min{f(xk+∆kdi), i = 1, . . . , p}. This strategy requires us
to compute f(xk + ∆kdi) for all p vectors in the set D. To ensure global convergence
of some subsequence to a stationary point we can accept any point xk + ∆k di for
which f(xk + ∆kdi) < f(xk) [26]. Thus, finding f(x+) = min{f(xk + ∆kdi), i =
1, . . . , p} is in some sense more than is really needed. However, concurrency masks
the computational expense of the stronger acceptance condition.

If none of the points in the pattern reduces the objective, then we set xk+1 = xk
and reduce ∆ by setting ∆k+1 = 1

2∆k; otherwise, we set ∆k+1 = ∆k and xk+1 = x+.
We repeat this process until some reasonable stopping criterion, such as ∆k ≤ tol, is
satisfied [8, 9]. This basic strategy leads us to the algorithm we call parallel pattern
search (PPS), which is given in Fig. 2.2.

There still remains the question of what constitutes an acceptable pattern. Fol-
lowing the examples in [16], we borrow the following definition from [6]:

Definition 2.1. A set of vectors {d1, . . . , dp} positively spans Rn if any vector
v ∈ Rn can be written as a nonnegative linear combination of the vectors in the set;
i.e., for any v ∈ Rn there exist α1, α2, . . . , αp ≥ 0 such that

v = α1d1 + · · ·+ αpdp.

We require D to be a positive spanning set for Rn. (This is a bit of a misnomer; given
the definition, it perhaps would be more apt to to call it a “nonnegative” spanning
set.) We add the condition that D be composed of rational vectors [16].
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Initialization:
• Set the iteration counter k = 0.
• Select a set of search directions D = {d1, . . . , dp}.
• Select a step-length control parameter ∆0.
• Select a stopping tolerance tol.
• Select a starting point x0 and evaluate f(x0).

Iteration:
1. Compute xk + ∆kdi and evaluate f(xk + ∆kdi), for i = 1, . . . , p, concurrently.
2. Determine x+ and f(x+) such that f(x+) = min { f(xk + ∆kdi), i = 1, . . . , p }

(synchronization point).
3. If f(x+) < f(xk), then xk ← x+ and f(xk)← f(x+). Else ∆k ← 1

2
∆k.

4. If ∆k > tol, k ← k + 1, go to Step 1. Else, exit.

Fig. 2.2. The PPS algorithm.

3. Asynchronous Parallel Pattern Search. The appeal of the parallel pat-
tern search strategy outlined in Fig. 2.2 is that it is straightforward to implement.
Unfortunately, inefficiencies in processor utilization for PPS arise when the objective
function evaluations do not finish in approximately the same amount of time. This
may happen for several reasons. First, the objective function evaluations may be
complex simulations that require different amounts of work depending on the input
parameters. Second, the computational loads on the individual processors may vary.
Third, the processors participating in the calculation may possess different computa-
tional characteristics. When the objective function evaluations take varying amounts
of time, those processors that can finish their share of the computation more quickly
wait for the remaining processors to contribute their results. Fourth, the number of
processes we are interested in executing may not exactly match the number of available
processors. Finally, there is the real risk that either processes or processors may fail
during the course of the computation. For all these reasons, we pursue a more versatile
concurrent strategy, which we call asynchronous parallel pattern search (APPS), that
allows us to effectively balance the computational load across the available processors.

Were we simply interested in load-balancing issues, the master-slave paradigm for
the design of parallel programs would be inviting. Given such a design perspective,
we could localize all decision making to a single process (the master) and devote all
remaining processes (the slaves) to the evaluation of f(xtrial) for various choices of
xtrial determined by the master process. Since we are assuming that the evaluation
of the objective is the dominant computational cost, we would not have to be overly
concerned about the communication bottlenecks that can sometimes occur using such
a paradigm. However, fault tolerance is our other prominent concern. If we localize the
decision-making to a single process and the master process fails, we would be unable
to finish the computation. (Recovery in the event that one of the slave processes fails
is easy; once a failure is detected, the master process can simply restart the failed
slave process.)

Such concerns lead us to the peer-to-peer paradigm. We want each process to be
an independent unit, capable of making its own decisions and equipped to respond
intelligently whenever it detects that other processes have failed.

3.1. Peer-to-Peer Synchronous PPS. In order to better understand APPS,
let us first consider a peer-to-peer version of synchronous PPS.

For parallel pattern search, there are p processes, with each process in charge of
a single search direction in the set D. In Fig. 3.1, we show the peer-to-peer version
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Initialization:
• Determine my search direction d ∈ D.
• Receive the initial value of the step-length control parameter ∆trial.
• Receive the value of the stopping tolerance tol.
• Receive the starting point xbest and receive (or evaluate) fbest ≡ f(xbest).

Iteration:
1. Compute xtrial ← xbest + ∆trial d and evaluate ftrial ≡ f(xtrial).
2. Perform a global reduction to determine f+ (and the associated x+) such that

f+ is the minimum of all ftrial values on all p processes.
3. (a) If f+ < fbest, then

i. ∆trial ← λ ∆trial with λ ∈ {2` | ` ∈ Z+} and
ii. {xbest, fbest} ← {x+, f+}.

(b) Else ∆trial ← 1
2

∆trial.
4. If ∆trial > tol, go to Step 1. Else, exit.

Fig. 3.1. Peer-to-peer version of (synchronous) PPS.

of synchronous PPS from the perspective of a single process. We drop the subscript
i = {1, . . . , p} to emphasize that each process is only concerned with its own unique
direction. In the initialization, each process determines its search direction and “re-
ceives” the values of ∆trial, tol, and xbest either by reading them from an input file or
by receiving them in a message from another process.

In the main iteration of PPS, the only communication a process has with its peers
is the reduction in Step 2, where all the processes participating in the computation
contribute their values for xtrial and ftrial. The reduction operation returns f+, the
minimum value of ftrial over all processes, and x+, the associated point. This reduction
operation is the synchronization point for PPS—the minimum value of ftrial over all
processes cannot be determined until all processes have finished their evaluation of
f(xtrial).

As indicated in Step 3ai, we may increase ∆trial when a decrease in f is obtained.
We have two possible reasons for doing so. First, we do not want ∆trial to become too
small based on the outcome of a search along a single direction. So if we find a step
that produces decrease in f , but for which ∆trial is smaller than some ∆min > tol,
then we choose the least nonnegative integer ` (i.e., ` ∈ Z+) such that 2`∆trial > ∆min

(in our implementation we somewhat arbitrarily choose ∆min ≡ 23 · tol). Assuming,
instead, that we ended the search successfully with a choice of ∆trial that satisfies
∆trial > ∆min, we may still choose to expand ∆trial. In our implementation we
double ∆trial (i.e., we choose ` = 1) if the same search direction produces at least two
successful iterates in a row. Our reason for this condition is straightforward: if we
have just completed a sequence of reductions in ∆trial to arrive at a steplength that
is sufficiently small to produce descent, it is counterproductive to follow this with an
immediate doubling of ∆trial. However, if the same search direction produces at least
two successful iterates in a row, then this would indicate that the size of the step we
are taking is probably too short, so we double ∆trial in an effort to accelerate the
search along that direction. If neither of the above two situations holds, then we do
not alter ∆trial (i.e., we choose ` = 0).

On the other hand, if there is no decrease in f , in Step 3b we reduce ∆trial by a
factor of one-half.

In Step 4, all processes simultaneously check for convergence, each using its own
locally-stored, locally-updated copy of ∆trial. We note that in a heterogeneous envi-
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ronment, there exists the possibility that the processes may not have identical values
for ∆trial because of slight differences in both storage and arithmetic for floating-point
numbers; see [2]. We address this issue in further detail in §3.3.2.

Iteration:
0. For each new best message in my queue:

(a) If f+ < fbest for an incoming triplet {x+, f+,∆+}, then
i. {xbest, fbest,∆best} ← {x+, f+,∆+}, and

ii. ∆trial ← ∆best.
(b) Else, discard the triplet {x+, f+,∆+}.

1. Compute xtrial ← xbest + ∆trial d and evaluate ftrial ≡ f(xtrial).
2. Set {x+, f+,∆+} ← {xtrial, ftrial,∆trial}.
3. (a) If f+ < fbest, then

i. ∆trial ← λ ∆trial with λ ∈ {2` | ` ∈ Z+}; ∆+ ← ∆trial;
ii. {xbest, fbest,∆best} ← {x+, f+,∆+}; and

iii. broadcast a non-blocking new best message with the triplet
{xbest, fbest,∆best}.

(b) Else ∆trial ← 1
2

∆trial.
4. If ∆trial > tol, go to Step 0. Else broadcast a non-blocking single direction

convergence message with the triplet {xbest, fbest,∆best}.
5. Wait and process each incoming message in my queue until either

(a) enough of the processes report single direction convergence for this same
point or
(b) a better point is received.
In case (a), exit. In case (b), go to Step 0.

Fig. 3.2. Peer-to-peer version of APPS.

3.2. Peer-to-Peer APPS. The peer-to-peer version of APPS, from the per-
spective of a single process, is given in Fig. 3.2. Note that the process’ local values for
xbest, x+, ∆trial, etc. may not always agree with the local values on other processes.
This is in contrast to PPS, where all values except ftrial and xtrial are synchronized.
While PPS relies on a global reduction operation to synchronize all critical values,
APPS relies on non-blocking broadcasts to exchange information between processes.
Descriptions of the individual steps of APPS follow. (The initialization for APPS is
unchanged from that for PPS.) As we examine these steps, keep in mind that at each
step, every process decides what to do next based only on its current local information.

Step 0: Checking for candidates from other processes. Before a process
undertakes a new evaluation of the objective function, it considers any “new best”
messages that may have arrived during the previous function evaluation. The receiving
process considers each incoming triplet {x+, f+,∆+} as a candidate for a new best;
hence the test in Step 0a. To make the procedure robust, we handle tie-breaking (i.e.,
the case where f+ = fbest) in a consistent fashion, the details of which are deferred
to §3.3.2.

Step 1: Evaluating the function. Step 1 is the computational workhorse of
parallel pattern search and is equivalent to the same step in synchronous PPS. The
one substantive difference is that in PPS, xbest and ∆trial are identical across all
processes. In APPS, these values are no longer synchronized; they depend only on
the information that is currently known to the process when it constructs xtrial.

Step 2: Assigning the local candidate. This step does not actually require
any action; it is here to emphasize that, in contrast to PPS, accepting the local trial
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point as a possible candidate for the new best does not involve the other processes.
Instead, input from other processes is assessed in Step 0, as it becomes available.

Step 3: Assessing the local candidate. If f+, the function value at x+, is
better than fbest, then ∆trial (and ∆+) are increased (using the same strategy given
in §3.1 for PPS), the process’ triplet {xbest, fbest,∆best} is updated, and a message is
broadcast to the other processes to inform them of this improvement. Otherwise, the
process reduces ∆trial and continues.

Step 4: Checking for convergence along my search direction. There are
two possible outcomes for Step 3: either f+ replaces fbest (in which case, ∆trial may
be increased) or fbest is unchanged and ∆trial is reduced. If the second outcome occurs
and ∆trial ≤ tol, this signals that no improvement can be found from the current xbest

along the search direction d that this process owns and thus we may have arrived at a
stationary point [9]. The process then notifies the other processes, by broadcasting a
“single direction convergence” message, that it has converged (within tolerance) along
its search direction.

Step 5: Waiting for a more complete picture of the entire search. The
last step in APPS is the one step where a process may wait in an idle loop. Step 5
is reached only when a process has converged along its search direction. The idle
process waits until either one of two things happens: it receives enough single direc-
tion convergence messages to verify global convergence to a stationary point of the
objective function, or another process produces a point with a function value that is
lower than fbest. The details regarding what constitutes “enough” single direction
convergence messages are deferred to §3.3.3, where we discuss the precise measure of
“enough” and how this can be determined.

3.3. Handling Messages and Exploiting Parallelism. Now that we have
discussed the essential logic of APPS, we change it slightly to better handle the
message traffic and to better exploit parallelism.

There are technical considerations underlying the implementation of APPS that
cause us to modify the algorithm slightly from the version presented in Fig. 3.2. In
particular, in the discussion above we have referred to a set of p processes, each
of which handles computation, communication, and decision-making. However, it is
convenient to split the computation (i.e., the evaluation of the objective function) from
the communication and decision-making. One motivation for spawning a separate
process to handle each evaluation of the objective function is that as a consequence
of receiving a new best point from another process, it may be desirable to terminate
an evaluation at some xtrial in order to move to the search to the new xbest. A
second motivation is that it should eliminate the accumulation of a large number of
unprocessed messages, which can cause the message queue to overflow.

We start with a group of APPS agent processes that are in charge of the commu-
nication and decision-making. Each evaluation of f(xtrial) is spawned as a separate
process that is subservient to a single APPS agent. The result is a set of APPS agents
working in peer-to-peer mode, with each APPS agent spawning function evaluation
processes as necessary. In contrast with the description of APPS given in Fig. 3.2,
APPS agents now dynamically initiate actions solely in response to messages, rather
than routinely cycling through a fixed set of steps. It should be noted that the APPS
agents require very little processing time, relative to the amount of time devoted to
evaluating f(xtrial). Essentially, each APPS agent lies dormant until the arrival of an
incoming message, which then triggers some action.



8 P. D. HOUGH, T. G. KOLDA, and V. J. TORCZON

The types of incoming messages that an APPS agent receives are categorized as
follows: a “return” from the process it spawned for the evaluation of f(xtrial), a “new
best” message from another APPS agent, a “single direction convergence” message
from another APPS agent, or a “shutdown” message from another APPS agent. We
now investigate in more detail an APPS agent’s reaction to each type of incoming
message.

3.3.1. Handling “return” messages. An APPS agent receives a “return”
message when the process it spawned to evaluate f(xtrial) returns the computed value
ftrial. In Fig. 3.3 we show an APPS agent’s actions in response. In the discussions
that follow, we introduce here an additional item to be associated with each point—
a convergence table Π. The convergence table is used to detect a stationary point.
It lists which of the p search directions from x have converged to within tolerance.
We defer a further discussion of how this information is processed to §3.3.3, where
we discuss an APPS agent’s action in response to a “single direction convergence”
message in more detail.

Return from Evaluation of the Objective. Receive ftrial.
1. Update xbest and/or ∆trial.

(a) If ftrial < fbest, then
i. ∆trial ← λ ∆trial with λ ∈ {2` | ` ∈ Z+},

ii. {xbest, fbest,∆best,Πbest} ← {xtrial, ftrial,∆trial,Πtrial}, and
iii. broadcast a non-blocking new best message with the quadruple
{xbest, fbest,∆best,Πbest}.

(b) Else if xbest is not the point used to generate xtrial, then ∆trial ← ∆best.
(c) Else ∆trial ← 1

2
∆trial.

2. Check for convergence and spawn next objective function evaluation.
(a) If ∆trial > tol, then compute xtrial ← xbest + ∆trial d, initialize Πtrial to

FALSE, and spawn a new process to evaluate f(xtrial).
(b) Else update Πbest (to signal convergence to xbest along my direction d)

and broadcast a non-blocking single direction convergence message
with the quadruple {xbest, fbest,∆best,Πbest} .

Fig. 3.3. APPS agent’s response to a return message.

After receiving a return message, an APPS agent first must determine if a new
best point has been identified, as shown in Step 1a. If so, the step length ∆trial may be
increased (using the same rule as for PPS, given in §3.1) and {xtrial, ftrial,∆trial,Πtrial}
replaces {xbest, fbest,∆best,Πbest}. The improvement is broadcast to all other APPS
agents.

Upon first inspection, the need for Step 1b may not be clear. An APPS agent
constructs xtrial using its current values of xbest and ∆trial (Step 2a in Fig. 3.3). While
the process spawned by an APPS agent is busy evaluating f(xtrial), there is always the
chance that another APPS agent will broadcast a quadruple {x+, f+,∆+,Π+} whose
value of f+ improves upon the resident value of fbest. As we shall see in §3.3.2, when an
APPS agent receives such an incoming message, it replaces {xbest, fbest,∆best,Πbest}
with {x+, f+,∆+,Π+}. Before constructing the next xtrial, the APPS agent ascertains
if, while f(xtrial) was being computed, xbest was replaced as the result of an incoming
message from another APPS agent. If so, then this new xbest will be used to compute
the next xtrial. In this case, the APPS agent replaces ∆trial with ∆best; using the
value of ∆ associated with the best point retains some scaling information.

In Step 1c, we halve ∆trial after confirming that fbest has not been replaced either
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by ftrial or by some f+ contained in a message that arrived from another APPS agent
while f(xtrial) was being computed.

Step 2 in Fig. 3.3 checks the value of ∆trial, our measure of progress toward a
solution, and reacts appropriately. If ∆trial is greater than tol we continue the search.
Otherwise, when ∆trial ≤ tol, the search along the APPS agent’s direction d has
converged to xbest, and this information needs to be broadcast to all APPS agents.

3.3.2. Handling “new best” messages. When an APPS agent receives a
“new best” message from another APPS agent, the first thing to check is whether or
not the incoming quadruple really does contain the best function value seen thus far.

Here we encounter an important caveat of heterogeneous computing [2]. The
comparison of floating point values (in particular, f ’s and ∆’s) controls the flow
of APPS and we depend on these comparisons to give consistent results across all
processes. Therefore, we must ensure that values are only compared to a level of
precision available on all processors. In other words, a “safe” comparison declares a
equivalent to b if

| a− b |
max{|a|, |b|}

< ε∗mach,(3.1)

where ε∗mach is greater than or equal to the maximum value of machine epsilon across
the values for machine epsilon on all processors participating in the computation. If
both |a| and |b| are below ε∗mach, then they are automatically considered equal and
(3.1) is not evaluated.

The second concern raised by the concurrency of the processes is what to do when
f+ and fbest are equivalent. Currently, APPS uses the following tie-breaking scheme.
If f+ and fbest satisfy (3.1), then compare ∆+ and ∆best and select the candidate
with the larger value of ∆. If ∆+ and ∆best also satisfy (3.1), check next to see if x+

and xbest are the same. Rather than comparing x+ and xbest directly, by computing
some norm of the difference, we use a unique global identifier with which APPS tags
each point. Thus, two points are considered equivalent if and only if their f -values,
∆-values, and unique global identifiers are equivalent. This means that two points
that actually are equal, but were generated via different paths on different processes,
will be considered to be “different” points since their global identifiers do not match.
However, since the purpose of the identification is to break ties in a consistent fashion,
all we need worry about is what to do when both the f -values and the ∆-values are
equivalent but the global identifier is not. In this last case, ties are broken in favor
of the point with the lower global identifier. Since the global identifier of each point
is a unique integer, the resolution is unambiguous. So, whenever we compare f+ and
fbest, the comparison incorporates this tie-breaking strategy.

Now that we can assess “improvement” on fbest in a way that both handles the
vagaries of floating-point representation and breaks ties in a consistent fashion, we
examine in more detail an APPS agent’s actions to a “new best” message, shown in
Fig. 3.4.

Assuming improvement on fbest, the first action taken by an APPS agent is to
determine the status of the search along the direction d. There are three possibilities
to consider.

The first possibility, shown in Step 1a, is that at some point the search along d
had converged within tolerance and so the APPS agent is now waiting for incoming
messages to either confirm overall convergence of the search or, as in this case, to



10 P. D. HOUGH, T. G. KOLDA, and V. J. TORCZON

New Best. Receive {x+, f+,∆+,Π+}.
1. If f+ < fbest then

(a) If I had converged to xbest along my search direction d then
i. {xbest, fbest,∆best,Πbest} ← {x+, f+,∆+,Π+}, ∆trial ← ∆best,

ii. compute xtrial ← xbest + ∆trial d, initialize Πtrial to all FALSE, and
spawn a new process to evaluate f(xtrial).

(b) Else if ∆trial < ∆+, then
i. terminate the process evaluating f(xtrial),

ii. {xbest, fbest,∆best,Πbest} ← {x+, f+,∆+,Π+}, ∆trial ← ∆best,
iii. compute xtrial ← xbest + ∆trial d, initialize Πtrial to all FALSE, and

spawn a new process to evaluate f(xtrial).
(c) Else, {xbest, fbest,∆best,Πbest} ← {x+, f+,∆+,Π+}.

2. Else discard {x+, f+,∆+,Π+}.

Fig. 3.4. APPS agent’s response to a new best message.

produce a new best point (see Step 5 in Fig. 3.2). When the latter occurs, the
incoming quadruple is accepted and the search is resumed from the new xbest.

The second possibility, shown in Step 1b, is that the search along d is still in
progress, but that the steps along d have become small, i.e., ∆trial < ∆best. If
so, then the search along d has reduced ∆trial—perhaps repeatedly—in an effort to
find improvement on fbest. In this case, it is particularly useful to have an APPS
agent acting independently of the function evaluation process. An APPS agent can
terminate the current evaluation of f(xtrial) before it actually finishes (Step 1bi) in
favor of starting a new evaluation of the objective based on a new value of xbest

(Step 1biii). The question to ask is why we would choose to do so.
In certain cases, the current evaluation of the objective function is terminated in

favor of starting one based on a new best point. Imagine the following scenario. Sup-
pose three APPS agents, A, B, and C start off with the same value for xbest, generate
their own xtrial’s, and spawn their own evaluations of f(xtrial). Each evaluation of
the objective function takes several hours. The evaluation for Agent A completes first
and there is no improvement, so Agent A reduces its step length, generates a new trial
point, and spawns a new evaluation of the objective function. A few minutes later,
Agent B’s evaluation finishes and it produces improvement. Agent B broadcasts a
“new best” message to the other APPS agents. Agent A receives this message and
terminates its current evaluation of the objective function in order to move to the
better point. This may save several hours of wasted computing time. However, Agent
C, which is still working on its first evaluation of the objective function, waits for
that to complete before considering a move to the new xbest because the inequality
on ∆trial does not hold in Step 1b of Fig. 3.4.

The third possibility when the incoming value of f+ improves upon the local
value of fbest is to simply accept the incoming quadruple, as shown in Step 1c. This
is exactly the strategy for Agent C outlined in the scenario described above.

The final observation to be made is that if f+ does not improve upon fbest, the
quadruple {x+, f+,∆+,Π+} is simply discarded; it already has been superseded by
another point and thus is of no interest.

3.3.3. Handling “single direction convergence” messages. Detecting con-
vergence for APPS is a trickier issue than it is for PPS because the APPS agents do not
perform a synchronized test for convergence. Instead, each APPS agent stops spawn-
ing processes to evaluate f(xtrial) when its local value of ∆trial satisfies ∆trial ≤ tol.
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Any APPS agent that arrives at this conclusion then waits until either enough other
APPS agents stop at the same best point (we describe “enough” below) or until an-
other APPS agent produces a better point from which to resume the search. Since
every quadruple {xtrial, ftrial,∆trial,Πtrial} which improves upon fbest is broadcast to
all APPS agents, every APPS agent eventually agrees on the best point.

Single Direction Convergence. Receive {x+, f+,∆+,Π+}.
1. If f+ < fbest then go through the steps for a new best message.
2. If f+ = fbest then

(a) Update Πbest to include any new information contained in Π+.
(b) If I am the temporary master, then check for convergence.

If enough of the other processes have converged (i.e., their associated
directions form a positive spanning set), then

i. report {xbest, fbest},
ii. broadcast a non-blocking shutdown message to the remaining

APPS agents, and
iii. exit.

3. Else discard {x+, f+,∆+,Π+}.

Fig. 3.5. APPS agent’s response to a single direction convergence message.

When an APPS agent receives a “single direction convergence” message, it checks
to make sure that this function value and associated point have been seen before. If
not (a distinct possibility since messages may arrive out of order), then the APPS
agent handles the incoming quadruple as if it were part of a “new best” message.

If the incoming point is the same as the best point we have, i.e., f+ = fbest, then
the APPS agent receiving the message must update its convergence table Πbest to
include any new information regarding the convergence of other search directions to
the same point xbest. Again, timing issues must be taken into account as either the
sending or the receiving APPS agent may have information that has not yet been seen
by the other.

Next, in order to check for convergence of a sufficient number of the p independent
search directions, it is useful to have a temporary master to avoid redundant compu-
tation. We define the temporary master to be the APPS agent with the lowest process
identification number. While this is usually process 0, it is not necessarily the case if
a fault occurs; we discuss this scenario further in §4. The temporary master checks
to see if the set of directions along which the search has converged forms a positive
spanning set. If so, it reports to the user the final result of the search, broadcasts a
“shutdown” message, and exits.

Checking for a positive spanning set can be done as follows. We know that
a positive spanning set for Rn must contain at least n + 1 vectors [6]. So if the
convergence table has at least n + 1 entries, it is time for the temporary master to
check for convergence of the overall process. (Every APPS agent knows D, which is
why it is possible for any APPS agent to serve as temporary master.) Let V ⊆ D be
the candidate for a positive spanning set. We solve n + 1 nonnegative least squares
problems according to the following theorem.

Theorem 3.1. A set V = {v1, v2, . . . , vm} is a positive spanning set if the set
E = {e1, e2, . . . , en, − 1} is in its positive span (where −1 is the vector of all −1’s).
Alternatively, we can check the positive basis by first verifying that V is a spanning
set using, say, a QR factorization with pivoting, and then solving a linear program.

Theorem 3.2 (Wright [27]). A spanning set V = {v1, v2, . . . , vm} is a positive
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spanning set if the maximum of the following linear program is 1.

max t, s.t. V x = 0, xi ≥ t ∀ i, 0 ≤ t ≤ 1,

where V is a matrix representing the spanning set V.
We make use of Theorem 3.1 since Netlib provides freely available software, due

to Lawson and Hanson [14], for solving nonnegative least squares problems. To make
use of Theorem 3.2 requires software both for QR factorizations and for the solution
of linear programs; the latter is particularly difficult to come by in a freely available,
portable, and easy-to-use format.

3.3.4. Handling “shutdown” messages. The reactions of the other APPS
agents to a “shutdown” message from the temporary master should be clear after the
discussion in §3.3.3; they are given in Fig. 3.6. Again we note the value of having
both an APPS agent and a separate process for evaluating f(xtrial); once the shutdown
message has been received, an APPS agent can immediately terminate the process
evaluating f(xtrial) and exit.

Shutdown. Receive the shutdown message from the temporary master.
1. Terminate the process evaluating f(xtrial) and
2. exit.

Fig. 3.6. APPS agent’s response to a shutdown message.

4. Fault Tolerance in APPS. The move toward a variety of computing en-
vironments, including heterogeneous distributed computing platforms, brings with it
increased attention to the fault tolerance of parallel algorithms. The large size, di-
versity of components, and complex architecture of such systems create numerous
opportunities for hardware failures, and our computational experience confirms that
these failures do, in fact, occur.

In addition, the size and complexity of current simulation codes call into question
the robustness of the function evaluations. For example, our experience has been that
it is possible to generate input parameters that are both physically and mathemati-
cally feasible but for which the simulation codes fail to finish successfully. Thus, we
must contend with software failures as well as hardware failures.

A great deal of work has been done in the computer science community with
regard to fault tolerance; however, much of that work has focused on making fault
tolerance as transparent to the user as possible. This often entails strategies such
as checkpointing the entire state of an application to disk or replicating processes.
Fault tolerance has traditionally been used with loosely-coupled distributed applica-
tions that do not depend on each other to finish, such as business database applica-
tions. This lack of interdependence is atypical of most scientific applications. While
checkpointing and replication are adequate techniques for scientific applications, they
incur a substantial amount of unwanted overhead; however, certain scientific applica-
tions have characteristics that can be exploited to derive more efficient and elegant
stratagems for fault tolerance. Algorithm-dependent strategies for incorporating fault
tolerance have already received attention in the scientific computing community; see,
e.g., [21]. These approaches rely primarily on the use of diskless checkpointing, a
significant improvement over traditional approaches. The nature of APPS is such
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that we can even further reduce the overhead for fault tolerance and dispense with
checkpointing altogether.

Two important observations should be made regarding fault tolerance in APPS.
First, there are no single points of failure in the APPS algorithm itself. Assuming
initialization is successful, there is just one scenario that requires a single APPS
agent to coordinate efforts among all agents (i.e., the temporary master used to check
convergence of the entire search, as shown in Fig. 3.5). However, the choice of master is
not fixed. If the APPS agent serving as temporary master should fail while performing
its tasks, another APPS agent steps up to take over. This means the degree of fault
tolerance in APPS is constrained only by the underlying communication architecture.
The current implementation of APPS uses PVM [11], which provides a rich library of
communication and process management procedures needed by the APPS agents. The
one limitation we inherit from PVM is that it executes multiple processes on multiple
processors under the control of a single master PVM daemon. Thus the PVM daemon
introduces a single point of failure within our current implementation of APPS. We
expect HARNESS [1], the successor to PVM, to eliminate this disadvantage. The
second observation to be made is that no checkpointing or replication of processes
is necessary. The APPS agents can be reconfigured dynamically. New APPS agents
require only a small packet of information from any active APPS agent in order to
take over where a failed APPS agent left off. Therefore, we have been able to take
advantage of algorithmic characteristics of pattern search in order to incorporate a
high degree of fault tolerance into APPS with almost no additional overhead.

Having made these two observations, we now describe how fault tolerance is ad-
dressed in APPS. Every APPS agent keeps a record of active and inactive APPS
agents (one per search direction), the available hosts, and a mapping of the active
APPS agents to the available hosts. There are three types of faults with which we
are concerned: 1) the failure of a process evaluating the objective function, 2) the
failure of an APPS agent, and 3) the failure of a host processor. Once again we
note the advantage of maintaining pairs of processes: an APPS agent to handle all
communication (including information from PVM regarding the failure of processes)
that is separate from the processes tasked with the major computations, the evalu-
ations of the objective function. An individual APPS agent uses its record of active
and inactive APPS agents to decide whether or not it is the temporary master and
to determine the other APPS agents with whom it should interact in response to a
failure. The responses to these three scenarios are shown in Fig. 4.1.

When a process evaluating f(xtrial) fails, the failure is reported to its master
(i.e., the APPS agent that originally spawned it), and that APPS agent respawns the
evaluation of the objective function at the current trial point. If several (e.g., five)
attempts to evaluate the objective function fail at the same trial point, the APPS
agent that was spawning those evaluations exits, triggering an APPS agent failure
message to be sent to the other APPS agents. The failure of an evaluation could be
handled in different ways for different applications; for instance, attempts to evaluate
the objective function at a certain point could be abandoned without necessarily
terminating the APPS agent.

When an APPS agent fails, all the remaining APPS agents record this failure. If
the APPS agent that failed happened to be serving the role of temporary master, then
another APPS agent must assume this responsibility. We maintain the convention that
the active APPS agent with the lowest process number serves as temporary master.
Once the question of who is temporary master is resolved, the first thing the new
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• An APPS Agent Detects Failure of its Function Evaluation Process.
1. If the number of attempts to evaluate f(xtrial) is less than the maximum

number allowed, then respawn a new process to evaluate f(xtrial).
2. Else exit.

• An APPS Agent Detects Failure of Another APPS Agent.
1. Record the failure.
2. If “my” process number is the lowest among the APPS agents still active,

then assume the responsibility of temporary master.
3. If I am the temporary master, then

(a) Check for convergence. If enough of the other APPS agents report
convergence (i.e., their associated directions form a positive
spanning set), then

i. report {xbest, fbest},
ii. broadcast a non-blocking shutdown message to the remaining

APPS agents, and
iii. exit.

(b) If the directions corresponding to the remaining APPS agents do
not form a positive spanning set, respawn all failed APPS agents on
available host processors.

• An APPS Agent Detects Failure of a Host Processor.
1. Remove failed host from list of available host processors.
2. Determine all APPS agents residing on the failed host processor and

treat each as a failed APPS agent.

Fig. 4.1. Fault tolerance messages and actions.

temporary master does is check for convergence since the now defunct APPS agent
may have been in the midst of that check when it failed. If the search has not yet
converged, the temporary master checks whether or not the set of directions owned
by the remaining active APPS agents forms a positive spanning set. If so, then it
is still possible to reliably determine whether or not the algorithm has converged, so
nothing is done. Otherwise, all defunct APPS agents are restarted on the available
hosts by the temporary master. Note that multiple APPS agents may be assigned to
a single host.

If a host fails, the defunct host processor is removed from the list of viable hosts.
The APPS agents that were running on the defunct host are regarded individually as
failed APPS agents, which are then handled using the rules stated for APPS agent
failures.

Despite the growing attention to fault tolerance in the parallel computing world,
we are aware of only one other parallel optimization algorithm that incorporates fault
tolerance, FATCOP [3]. FATCOP is a parallel mixed integer program solver that
has been implemented using a Condor-PVM hybrid as the communication substrate.
FATCOP is implemented in a master-slave fashion, which means that there is a sin-
gle point of failure at the master process. This is addressed by having the master
checkpoint information to disk (via Condor), but recovery requires user intervention
to restart the program in the event of a failure. In contrast, once APPS has finished
initialization, it can recover from the failure of any process of its own creation, includ-
ing the failure of the temporary master. It does so on its own, with no checkpointing
whatsoever.

5. Numerical Results. We compare APPS and PPS on several test problems
as well as two engineering problems: a thermal design problem and a circuit simulation
problem.



ASYNCHRONOUS PARALLEL PATTERN SEARCH 15

The tests were performed on the CPlant supercomputer at Sandia National Labs
in Livermore, California. CPlant is a cluster of DEC Alpha Miata 433 MHz Processors.
For our tests, we used 50 processors dedicated to our sole use.

5.1. Standard Test Problems. We compare APPS and PPS with 8, 16, 24,
and 32 processors on six four-dimensional test problems [20, 5], shown in Table 5.1.

1 2 3 4 5 6
broyden2a broyden2b chebyquad epowell toint trig vardim

Table 5.1

Six standard test problems.

Since the function evaluations are extremely fast, we added extra “busy work,” (in
the form of solving a 100 × 101 nonnegative least squares problem) in order to slow
down the processes evaluating f and better simulate the computational behavior of
the optimization problems in which we are interested.

The parameters for APPS and PPS were set as follows. Let n = 4 be the problem
dimension, and let p ∈ {8, 16, 24, 32} be the number of processors. The first 2n search
directions in D are {e1, e2, . . . , en,−e1,−e2, . . . ,−en}. The remaining p−2n directions
are generated randomly (with a different seed for every run) and normalized to unit
length. This construction ensures that D is a positive spanning set. We initialize
∆ = 1.0 and tol = 0.001. We start each of these six problems from the standard
starting point [20, 5].

Method Process Function Function Init Idle Total
ID Evals Breaks Time Time Time

APPS 0 237 66 0.17 0.00 24.72
1 266 70 0.02 0.12 22.36
2 302 89 0.02 0.12 24.32
3 274 77 0.02 0.15 22.31
4 270 62 0.02 0.04 24.56
5 282 81 0.02 0.04 24.58
6 273 59 0.02 0.04 24.59
7 276 61 0.02 0.03 24.55

Summary Statistics 272.5 70.6 0.04 0.07 24.72

PPS 0 235 0 0.74 2.55 30.63
1 235 0 0.39 7.23 30.28
2 235 0 0.25 6.74 30.14
3 235 0 0.13 6.94 30.01
4 235 0 0.10 6.36 29.98
5 235 0 0.07 6.51 29.95
6 235 0 0.04 6.23 29.92
7 235 0 0.02 6.26 29.90

Summary Statistics 235 N/A 0.22 6.10 30.63
Table 5.2

Detailed results for epowell on eight processors.

Before considering the summary results, we discuss the details of two sample
runs (one each for APPS and PPS) given in Table 5.2. Each process reports its own
counts and timings. All times are reported in seconds and are wall clock times. Be-
cause APPS is asynchronous, the number of function evaluations spawned by each
APPS agent varies considerably. Furthermore, the APPS agents sometimes termi-
nate (“break”) processes evaluating f(xtrial). On the other hand, because PPS is
synchronous, every process executes the same number of function evaluations and
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there are no breaks. For both APPS and PPS, the initialization time is longer for
Process 0 since it is in charge of spawning all remaining tasks. The idle time varies
from process to process, but is overall lower for APPS than PPS. An APPS agent is
idle only when it has converged along its search direction, but a PPS process may
potentially have some idle time every iteration while it waits for the completion of the
global reduction. The total wall clock time varies from process to process since each
starts and stops at slightly different times. The summary information reports the
mean over all eight processes, except in the case of total time, where the maximum
total time over all eight processes is reported.

Because some of the search directions are generated randomly, every run of APPS
and PPS follows a different path to the solution and generates possibly different
solutions in the case of multiple minima. (The exception is PPS with p = 8. Because
there are no “extra” search directions, the path to the solution is the same for every
run—only the timings differ. The nondeterministic nature of APPS causes us to see
different counts and different timings for every run, even if the search directions for
each run are identical.) Therefore, for each problem in Table 5.1 we report the mean
of the summary statistics from 25 runs; for each individual run we collected the same
summary statistics (except the initialization time) reported in Table 5.2.

Prob No. Function Evals APPS Idle Time Total Time
No. Procs APPS PPS Breaks APPS PPS APPS PPS

1 8 40.59 37.00 8.14 0.07 0.95 3.88 4.88
16 41.77 40.12 7.93 0.02 2.04 3.98 6.68
24 38.30 37.36 6.98 0.02 4.68 3.80 9.33
32 36.57 37.92 6.88 0.03 7.81 3.83 12.81

2 8 40.35 37.00 8.28 0.06 0.97 3.84 4.92
16 41.07 39.11 7.38 0.02 2.06 3.95 6.62
24 38.47 39.60 7.20 0.02 4.77 3.77 9.68
32 35.10 36.76 6.23 0.03 7.04 3.72 11.92

3 8 73.06 62.00 16.74 0.05 1.61 6.86 8.11
16 48.33 40.44 9.54 0.02 2.11 4.69 6.92
24 45.67 38.64 9.26 0.02 4.59 4.47 9.39
32 44.34 37.60 9.14 0.04 7.54 4.59 12.56

4 8 272.29 235.00 68.27 0.30 6.64 24.50 30.48
16 139.63 153.04 37.39 0.05 8.04 12.24 24.76
24 139.38 126.96 36.40 0.03 14.10 12.26 28.46
32 98.88 102.64 26.20 0.03 28.07 9.41 41.03

5 8 53.83 41.00 10.97 0.04 1.11 4.99 5.60
16 51.40 39.12 10.47 0.02 1.97 4.91 6.51
24 47.86 36.88 9.24 0.02 4.43 4.69 9.03
32 45.90 33.04 8.70 0.04 6.41 4.81 10.83

6 8 205.39 77.00 51.24 0.05 2.00 18.15 9.97
16 101.46 80.44 25.58 0.02 3.97 8.93 12.83
24 72.44 49.96 17.19 0.02 5.61 6.57 11.63
32 64.09 46.04 15.96 0.03 9.58 6.14 15.51

Table 5.3

Summary statistics (across 25 runs) for the four-dimensional test problems shown in Table 5.1.

The test results are summarized in Table 5.3. These tests were executed in what
should have been a particularly favorable environment for PPS—a cluster of homoge-
neous, dedicated processors. The primary difficulty for PPS is the cost of synchroniza-
tion in the global reduction. In terms of average function evaluations per processor,
APPS and PPS typically required about the same number. In general, for both APPS
and PPS, the number of function evaluations per processor decreased as the number
of processes increased. We expected the idle time for APPS to be less than that for
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PPS; and, indeed, the idle time is two orders of magnitude less. Furthermore, the
idle time for PPS increases as the number of processors goes up. APPS was faster
(on average) than PPS in 23 out of 24 cases. The total time (on average) for APPS
either stayed more or less steady or actually decreased as the number of processors
increased. In contrast, the total time (on average) for PPS almost always increased
as the number of processors increased, due to the synchronization penalty incurred
with the addition of more processes.

Comparing APPS and PPS on simple problems is not necessarily indicative of
results for typical engineering problems. The results in §5.2 and §5.3 yield more
meaningful comparisons, given the types of problems for which pattern search is best
suited.

5.2. TWAFER: A Thermal Design Problem. In this set of tests, the en-
gineering application is an optimal control problem for a thermal deposition furnace
for silicon wafers. The furnace contains a vertical stack of wafers and several heater
zones. The goal is to choose power settings for the heaters in each of n zones to achieve
a prescribed constant temperature across each wafer and throughout the stack. The
simulation code, TWAFER [12], yields measurements at a discrete collection of points
on the wafers. The objective function f is defined as

f(x) =
N∑
j=1

(Tj(x)− T∗)2
,(5.1)

where N is the number of discrete temperature measurement points, Tj(x) is the
simulated temperature at the jth point for the power settings defined by x, and T∗ is
the prescribed ideal temperature.

We consider the four- and seven-zone (or variable) problems withN = 40 andN =
400, respectively. For the four-zone problem, the initial guess produced a function
value of 2.26× 106. The initial guess for the seven zone problem produced a function
value of 7.43× 104. (The initial guess for the seven-zone problem was much closer to
the final solution.)

We used the following settings for APPS and PPS. The first n+1 search directions
are the points of a regular simplex centered about the origin. The remaining p−n−1
points are generated randomly and normalized to unit length. Because the magnitude
of the variables was O(100), we set ∆ = 10.0. Note that it can be quite useful to
choose the initial ∆ based on the magnitudes of the components in x0 as a way to
capture some scaling information about the problem [25]. We chose tol = 0.1, which
corresponds to a level of accuracy that is reasonable in the power settings.

There are some difficulties from the implementation point of view that are quite
common when dealing with simulation codes. Because TWAFER is a legacy code,
it expects an input file with a specific name and produces an output file with a
specific name. The names of these files cannot be changed, and TWAFER cannot be
hooked directly to PVM. As a consequence, we must write a “wrapper” program that
runs an input filter, executes TWAFER via a system call, and runs an output filter.
Because TWAFER is executed via a system call, APPS has no way of terminating its
execution prematurely. (APPS can terminate the wrapper program, but TWAFER
itself will continue to run, consuming system resources.) Therefore, we allow all
function evaluations to run to completion; that is, we do not allow any breaks.

Another feature of TWAFER is that there are nonnegativity constraints on the
power settings. The solution is known to be strictly positive, and the constraints
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play only a minor role in finding the solution. We did not invoke TWAFER at any
point that had one or more negative components; to accomplish this, we use a simple
barrier function that returns a large value (e.g., 1050). This is a classic trick used by
direct search methods for dealing with bound constraints. With the correct choice of
D, pattern search methods that use such a strategy can be shown to have at least one
subsequence of iterates that converge to a Karush-Kuhn-Tucker point [18, 19].

Problem Method Procs f(x∗) Function Idle Total
Evals Time Time

4 Zone APPS 20 0.67 334.6 0.17 395.94
4 Zone PPS 20 0.66 379.9 44.77 503.88
7 Zone APPS 35 3.30 240.4 71.48 2260.46
7 Zone PPS 35 2.85 202.2 213.90 2306.83

Table 5.4

Summary statistics (across multiple runs) for the four- and seven-zone TWAFER problems.

Results for the TWAFER problem are given in Table 5.4. The four-zone results
report the means across all twenty processors over all ten runs. The seven-zone results
report the means across all 35 processors over all nine runs. (We started ten runs
for the seven-zone problem. One of the ten PPS runs failed due to a processor fault.
One of the ten APPS runs experienced several faults and, although it did get the final
solution, the summary data was incomplete.)

Recall that the goal is to choose power settings to achieve a constant temperature
across each wafer and throughout the stack. In Fig. 5.1 we show the temperatures
computed by TWAFER at each wafer along a line of discretization points from the
bottom to the top of the furnace. We show results for both the initial settings we
were given for the seven-zone problem and the best and worst settings returned by
APPS, corresponding to function values of 1.48 and 7.74, respectively. (The plots
of the results from the best and worst PPS solutions are indistinguishable from the
best and worst plots for APPS.) Table 5.4 shows that for this problem, on average,
PPS yields slightly better function values than APPS (less than 1/1000th of a percent
relative difference compared to the function value at the starting point) but required
more total time. Fig. 5.1 demonstrates that qualitatively, all the solutions produced
were comparable, particularly given the modest choice of tol = 0.1.

Clearly, the idle time figures prominently in the overall performance of PPS. The
average simulation time is 1.3 seconds for the four-zone problems and 10.4 seconds for
the seven-zone problem. However, when the nonnegativity constraints are violated,
TWAFER is not called, so the execution time is essentially zero since we simply return
1050 after checking the coordinates of xtrial. The relatively high mean idle time for
APPS (for the seven-zone problem) can be traced to a single run for which the idle
time was particularly high for some processors (634 seconds on average across all 35
processors); on the remaining runs, the average APPS idle time per processor was
lower by several orders of magnitude. We were unable to determine the cause of the
unusually large idle time.

5.3. SPICE: A Circuit Simulation Problem. The problem is to match simu-
lation data to experimental data for a particular circuit in order to determine its char-
acteristics. In our case, we have 17 variables representing inductances, capacitances,
diode saturation currents, transistor gains, leakage inductances, and transformer core
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Fig. 5.1. TWAFER results for the seven-zone problem using APPS with tol = 0.1. The
solid line represents the simulation output for the best settings found by APPS and the dotted line
represents the simulation output for the worst settings found by APPS. The dashed line represents
the simulation output for the initial settings. The target is a constant temperature of 1300.

parameters. The objective function is defined as

f(x) =
N∑
j=1

(
V SIM
j (x)− V EXP

j

)2
,(5.2)

where N is the number of time steps, V SIM
j (x) is the simulation voltage at time step

j for input x, and V EXP
j is the experimental voltage at time step j.

The SPICE3 [22] package is used for the simulation. Like TWAFER, SPICE3
communicates via file input and output and so we again use a wrapper program.

The input filter for SPICE is more complicated than that for TWAFER because
the variables for the problem are on different scales. Since APPS has no mechanism for
scaling, we handled this within the input filter by computing an affine transformation
of the variables used to formulate the objective function (5.2). Additionally, all the
variables have upper and lower bounds. Once again, we use a simple barrier function.

The output filter for SPICE is also more complicated than that for TWAFER. The
SPICE output files consist of voltages that are to be matched to the experimental data.
The experimental data is two cycles of output voltage measured at approximately N =
2700 discrete time steps (see Fig. 5.2). The simulation data contains approximately 10
or more cycles, but only the last few complete cycles are used because the early cycles
are not stable. The cycles must be automatically identified so that the data can be
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aligned with the experimental data. Furthermore, the time steps from the simulation
may differ from the time steps in the experiment, and so the simulation data is
interpolated (piecewise constant) to match the experimental data. The function value
at the initial point is 465.

Fig. 5.2. Spice results using APPS with tol = 0.1. The solid line represents the experimen-
tal output. The dashed line represents the simulation output after optimization. The dotted line
represents the simulation output for the initial point.

The APPS parameters were set as follows. The search directions were generated
in the same way as those for the test problems in §5.1. We set ∆ = 1.0 (the affine
transformation means the variables are well-scaled) and tol is 0.1 (the tolerance cor-
responds to a less than 1% change in the circuit parameter). Once again, we do not
allow “breaks” since the function evaluation is called from a wrapper program via a
system call.

Method Procs f(x∗) Function Idle Total
Evals Time Time

APPS 34 26.3 57.5 111.92 1330.55
APPS 50 26.9 50.6 63.22 807.29
PPS 34 28.8 53.0 521.48 1712.24
PPS 50 34.9 47.0 905.48 1646.53

Table 5.5

Results (one run each) for the 17 variable SPICE problem.

The results from APPS and PPS on the SPICE problem are reported in Table 5.5.
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In this case, we are reporting the results of single runs; we give results for 34 and
50 processors. The average SPICE run time is approximately 20 seconds; however,
once again we do not differentiate between times when the boundary conditions are
violated and when the SPICE code is actually executed. Increasing the number of
processors by 47% results in a 39% reduction in execution time for APPS but only 4%
for PPS. For both 34 and 50 processors, APPS is faster than PPS, and even produces
a slightly better objective value (compared to the starting value of more than 400).
At the solution, two constraints are binding.

Initial Final f(x∗) Total
Procs Procs Time

34 34 27.8 1618.46
50 32 54.2 1041.14

Table 5.6

APPS results for the 17 variable SPICE with a failure approximately every 30 seconds.

Table 5.6 shows the results of running APPS with faults. In this case, we used
a program that automatically killed one PVM process every 30 seconds. The PVM
processes are the APPS agents and the wrapper programs. The SPICE3 simulation
is executed via a system call, and so continues to execute even if its wrapper termi-
nates; regardless, the SPICE3 program can no longer communicate with APPS and
is effectively dead.

The results are quite good. In the case of 34 processors, every APPS task that
fails must be restarted in order to maintain a positive basis. So, the final number of
APPS processes is 34. The total time is only increased by 21% despite approximately
50 failures; furthermore, this time is still faster than PPS. In the case of 50 processors,
the final number of processors is 32. (Recall that tasks are only restarted if there are
not enough remaining to form a positive basis.) In the case of 50 processors, the
solution time is only increased by 29% with faults, and is once again still faster than
PPS. In this case, however, the quality of the solution is degraded. This is likely due
to the fact that the solution lies on the boundary and some of the search directions
that failed were needed to ensure convergence to a KKT point (see [18, 19]).

6. Conclusions. Our preliminary numerical results make clear that because
APPS dynamically initiates actions solely in response to messages, it is a more effec-
tive method—even in a homogeneous cluster environment—than PPS, where “more
effective” means that APPS requires less total time to return results that are compa-
rable to those returned by PPS. We expect the differences to be even more pronounced
for larger problems (where by “larger” we mean in terms of both the execution time
and the number of variables) and for heterogeneous cluster computing environments.
Unlike PPS, which routinely cycles through a fixed set of steps, APPS does not have
any required synchronizations and, thus, appears to gain most of its advantage by
reducing idle time.

Further, APPS is a fault-tolerant algorithm. We accomplish this by making
algorithmic changes to parallel pattern search that introduce almost no additional
overhead. As we saw in the results for the SPICE problem solved using 34 proces-
sors (§5.3), APPS does not suffer much slow-down when faults do occur.

Finally, in forthcoming work, Kolda and Torczon [13] will show that in the un-
constrained case, APPS is globally convergent (even when faults occur) under the
standard assumptions for pattern search [16, 26].
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These features duly noted, we are investigating further improvements to the imple-
mentation of APPS. For instance, in the implementation described here, each APPS
agent is responsible for exactly one process to evaluate the objective function. For
multi-processor (MPP) compute nodes, this means there will be multiple agents per
node. An alternative implementation of APPS is being developed in which there
is exactly one agent per node, with the single agent managing multiple evaluations
of the objective function. As part of this alternative implementation, the ability to
dynamically add new hosts as they become available (or to re-add previously failed
hosts) also will be incorporated.

Another improvement to the implementation will be the addition of a cache to
store the values of the function at all the points visited by the search in order to avoid
reevaluating the same point more than once. The challenges are to make the recovery
of this information fast and to decide when two points are actually equal. The latter
is especially difficult when we do not know the sensitivity of the function to changes
in each variable.

The importance of positive bases in the pattern also raises several interesting
questions. In general, we might consider the best way to generate the starting basis.
The analysis of pattern search makes clear that the “conditioning” of the positive basis
has an effect on the amount of decrease that may be realized [16]. Our numerical
studies have indicated that the quality of the positive basis can, indeed, affect the
progress of the search. Thus, explicitly monitoring the conditioning of the positive
basis, which changes dynamically, could improve the overall performance of APPS.
Further, supposing that enough failures have occurred so that there is no longer a
positive basis, we may ask if we can easily determine the smallest number of vectors
to add to once again have a positive basis. Our current implementation simply restarts
all failed APPS agents (see Figure 4.1). In general, we desire a pattern that maximizes
the probability of maintaining a well-conditioned positive basis in the event of failures,
without requiring us to keep a large number of processes active when it is neither
necessary nor convenient to do so.

Finally, although the engineering examples used in this work have bound con-
straints, the current version of APPS does not handle constraints in a rigorous fash-
ion. The poor results on the SPICE problem with faults on 50 processors may well
be attributed to this fact since several constraints are active at a known solution.
The analysis for pattern search suggests several algorithmic options we could pursue
[17, 18, 19], but the challenge is to do so in a way that works effectively within the
asynchronous framework we have devised. Future work will explore robust extensions
for handling constraints.
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